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o Three relevant analytical and experimental considerations
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on the initiation and propagation of internal fracture in a

solid are carried out.
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{ (a) The initiation of internal fracture in the vicinity

, of a point as a result of converging tensile pulses is ana-~
lyzed. A reasonable estimate of the state“of stress near one
of the foci of a prolate spheroid is obtained.

, (b) Experiﬁental successlin reflecting énd focusing sharp
pulses and éhus fracturing the neighborhood of a focus in a.
prolate spheroid is observed. The size of the internal frac-
ture ranging from a pinpoint to a volume having more than 3 mm
'in diameter has been obtained. .

(c) The propagation of a single crack in a solid is then

analyzed. Viscoelastic behavior of the medium is considered

and the time-dependent fracture information is given.
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operator. Introducing

into (1), the folliowing wave equations will be obtained.
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In spheroidal coordinates & , 7 ¢ 1if a, b6 are the

lengths of the major and minor axes respectively and .’ZF the

interfocal distance of the prolate spheroid, then @?-p°= /"
and [1]
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In the case of axial symmetry (5) reduces to
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and (4) reduces to
20 _ c2 v __, 4
because _(Z = _@ Ey ,» where &g 1is the unit vector in the
~ L d
direction of increasing ¢
The boundary conditions are such that over the spheroidal
surface both the normal and tangential stress components vanish.
These conditions can be expressed in terms of the functions &

ané ¢ . Let —/L’;L—\‘Eé/——_: £ then for vanishing normal



stresses
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and for vanishing shear stresses
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These equations (8) and (9) must be satisfied on the surface of
the spheroid j§==-§i

In the neighborhood of the focus where detonation occurs
the ma terial is subjected to very large compressive stresses.
As a result the equations of linear elasticity may not be applied.

This situation can be avoided by choosing a sphere of radius &



1‘ o such that outside this sphere the compressive stresses are small
enough to justify the use of the linear elasticity equations.
Consequently, the inner boundary conditions over the spherical
surface _§+7.—.~ 7.’5— are describcble by the following two ad-

ditional equations. For normal stresses:
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where P¢&) 1is the function descrlblng the norma,l pressure on the

(10)

sphere §+7 =.__ as a function of time. For shear stresses:
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The wave equatlons (3), (7) and the boundary conditions (8),

(9), (10), (11) completely specify the problem. Although the
. ,
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wave equations can be easily separated into ordinary differen-
tial equations whce solutions are spheroidal wave functions of
zero order [2] , it is extremely difficult to determine the
solution satisfying all the boundary conditions. Therefore,
the state of stress at a point in the spheroid at any instant
cannot be determined by routine amalytical methods. |

A Method of Analysis

However, we shall investigace only ;he propagation of the
incident dilatation waves and their reflection as well as their
convergence. For convenience, assuming that the compressional
waves as diverging from a sphere of radius & to the entire space,
the wave propagation is radially symmetric. Using spherical co-

ordinates (1) reduces to

gfzaé/ 24 [/ 2
2 r & 2t _ (12)
where ({ 1is the radial displacement.
The initial condition is

U=0, —g—;L‘=0 fa/”zléa, )y = é

(13)

The boundary conditions are

PL) Sor >0, /=&

o for t>0, [rro0 (16)

For simplicity, assume that A2(Z) is of the form

P(t)= 475 | (15)

where A4 and B are suitable constants. Then, using the Laplace



transform and the initial condition {(13), (12), and (14) can

be put respectively as follows:
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Solving (16) and substituting into (17) we obtain
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The singularities are at
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Inversion can be performed by calculating residues.
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For a speci-

o . .. /
fic case when Poisson's ratio is % , /| =24« we can eventually

obtain the inversion for T = O
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Now let us consider the reflection of waves.
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(21)

The reflection




of harmonic plane waves on the stress-free infinite plane is
a problem which has a simple solution. It is a familiar result
that when a dilatation wave is incident to a free plane surface
both dilatation and shear waves are reflected. If the ffee sur-
face is smooth and curved, we may divide the surface into in-
finitesimal area elements and regard each surface element as a
plane surface. The law of reflection of plane waves on a plane
boundary should then be valid for each surface element. The in-
cident spherical waves may also be regarded as plane waves when
the source ot the wave is sufficiently far away (as compared
with the dimension of the surface element) from the infinitesi-
mal surface element. If the source is not far -removed as is
the case in this problem, the spherical wave can be expanded
into plane waves using double Fourier integrals. Then the aé—
sump tion made in this method is quite reasonable [3] .

Let A,, Az , A; denote respectively the displacement am-
plitude of the incident dilatation wave, that of the reflected
‘dilatation wave, and that of the reflected shear wave. If O(is
the angle between the normal of the free surface and the direc-
tion of the incident wave or that of the reflected wave, and/G
is the angle between the normal of the free surface and the wave

normal of the reflected shear wave, then the following equations

must be satisfied.
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20A=Az) CosxX Sind - Az Cos 28 =0 (23)

(Ar+A4: ) cos 28 Sine — As sin 5/‘/72/&’ =0 (24)

These relationships are derived for plane harmonic waves of any
frequency; hence, they may be applied to plane waves which are

arbitrary functions of time. The displacement amplitude of an

incident harmonic dilatation wave of frequency «) can be ex-

pressed as

H = A sin ) ({— K@Y )
< : (25)

whnere ./ , é/ are local perpendicular codrdinates with J(-éxis
parallel to the outward normal at point of reflection on the
spheroidal surface. The amplitude of the reflected dilatation
waves can be expressed as

_ \ _ X Gset= Y Sinex
q§2—‘ 42 .5//7&}(2/ C’/ ) (26)

For an arbitrary frequency «w the only difference between the
functional fomms of ¢4, and ¢, is due to the difference be-
tween the directions of the wave normals. We conclude that when
the dilatation wave ¢, ( ,7) characterized by (21) is incident
on a surface element with an ?ncident angle of , the reflected
dilatation wave in the neighborhood of the surface element is

described by
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where /O 1s the distance between the surface element and the
second focus. The function F&H)= jﬂf— can be calculated

from (23) and (24) with A =24 . Thus, we obtain
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Taking spherical coordinates (/, &,#) with the origin
at the second focus and the £ -axis coinciding the axis of the
spheroid, then for points on the spheroidal surface the follow-
ing equation must be satisfied

A A o
2o Sin &

or of=-L .fm"/ 316
“ar (29)

Substituting (29) in (27) we can obtain an expression for 4/fe?)
Using this radial displacemeant function, the state of stress in
the neighborhood of the second focus may be studied. That is,

with ¢ (f,6,¢) given over the free surface

9



/p= ﬁ"pzpco_)'& ,
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it is required toc find the radial and tangential displacements
% (P, o©,C) and Up(f,o,¢) for small P , or for points
(P, 6) in the neighborhood of the -second focus.

It should be noted that the functicn ¢: (f, 9,7 ) is only
appiicable to points on the spheroidal surface. Away from the
spheroidal surface the interaction among waves from surface ele-
ments will change the wave shape. Formula (27), with the
left-hand side replaced by u:(f, &,¢ ), does not represent the
propagation of a wave. However, the function U: (P, 8,L) as

a time-dependent boundary condition actually determines the .

. state of stress near tne secoand focus.

It is seen that the exact determination of the stress field
is extremely difficult. However, some rougn idea could be ob-
tained among several relevant quantities. It is of some interest
to know the strain energy, ﬁransmitted to the second focus, which
contributes to the fracture around the second focus. If W and

\Wz are the strain energies corresponding to dilatational waves

before and after reflection respectively, then it can be shown

2 2
= (a) = el o

The rate ozf transmission of energy across any closed surface

that

is obtained by integrating (1) as

10




= };5/(/\ )T YL U VY | g ds (32)

waere Alz is the outward drawn normal.L&] . Evaluating (32) when
)\ =,Q/U the rate of energy transmission across the spherical
surface [/ =g

W _ g 2_2U(lE f)[ PUrs 4> UEL)
— g2 al] [ 2 22 e ) +F
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Similarly, the rate of energy transmission to the second focus
at the instant ZT#szGZﬂ~¢3 is obtained by evaluating (32)

over the spheroidal surface as

DWe (£ + -—z—-z",;é) U 34/ )
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Integration of (34) over a period of time, say between ﬁ/ and %, ,
gives the total Wz (#,%) transmitted during this period. Since
all paths of the dilatatiénal waves between two focl' are equal,
the second focus will be under uniform hydrostatic tensﬁon. We
can then assume that a small neighboriood near the second focus
is also under aydrostatic temsion. Let 5 be the radius of the

fracture and & the amount of strain energy per unit volume



Mo & = 77 3—35
3
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In case & 1s not known, and Vo is the maximum value of

W2(Z, £+ "Zcé,:) , >0 and W, 1is the minimum value

below whicia no fracture will occur, then, for the case A=24

Wor — m.// ey dv = Zop 57

where ?/'s hydrostatic pressure under which fracture occurs. Or

S o [27/7/ '/’V/H-M] Vo= v

*(36)
Relaticn (36, gives a theoretical estimate on the fracture for
a given ﬁ and Wwm . Fig 1 gives the relationship between W, ~Wo
and S . It is interesting to note that for constant /4 the
larger the value of 7’0 the smaller is S . This relation can
8150 be used in the estimation of hydrostatic pressure ? Zor
fracture if ¢ is measured. The theoretical value of Win is
overestimated here since a portion of the energy must be spent
in incducing fracture near the first focus. If (36) is used in
evaluating ﬁ it can be shown that 7& will be underestimated.
Another matter to be noticed is that before (36) can be evaluated,
the magnitude 4 in (15) must be determined. This by no means
is easy. However, it is reasonable to assume that A should
be the same for the same amoun: of explosive used. This would
provide a way to study and compare with experimental results.

Some experimental data are shown in the following section.




(b) Fracture under a State of Radial Tension
-~ I . RS £ A s - - £ aeons
+ae strengia and rraciure o a solid under a state of tri-

axiai tension has long been of interest to many researca workers
[5] . 7This is particularly true in finding practical methods

for obtaining experimental data. One method of using reflected
intense mechanical waves and focusing them to a point in a pro-
late spheroid is found to be quite successful under suitable con-
ditions. By exploding lead azide at one focus of a prolate
spheroid macde of polystyrene or polymethyl methacrylate materials
extremely high compressional waves cua be created. These waves
radiate out from the vicinity of the focal point and converge

to the second focus cfter being rellected from the free spheroid-
al surface. -As the reflected waves are tensile in nature, frac-
ture occurs when they converge to one point for a sufficient
length of time. Figs 2 and 3 illustrate two fractured specimens.
Fig 4 shows some experimental data. This compares fairly well
with theoretical results if'proportiinal reduction of the strain
energy from expiosive charges is assumed. |

By comparison of the theoretical and experimental results,

it appears that

.J - \"‘/'
P:(Z%/ Wzngé/(//z

which is constant as (Ww—W)/S5® is found to be invariant
for almost any point on tae experimental curve. If the absolute
magnitude can be determined, then the internal stress 7 required
for fracture uﬁder a state of hydrostatic tension will be

obtained.

13



It might also be ol importance to mentlioa that the incep-

b

tion of a crack at the second iocus of the prolate spheroid is
essentialiy resulted by a Lydrostatic tension. However, the
state of stress wili. not be hydrostatic when the volume of
fracture sphere becomes appreciable. Thnis is so not only be-

cause of the geometry of the prolate spheroid but also the in-

complete reflection of the pulses frca the spheroidal surface.

14




(¢) Three-Dimensional Crack Propagation in a Transversely
Isotropic Viscoelastic Medlium.

hy J. = o
Lniroqueiion

.

After the initiation of a crock 1n a solid, the studying
of the propagation of the crack in fracture processes becomes
necessary. The basic knowledge lcarned will be important in the
progress of fracture wechanics. 1In general, material bodies are
predominantl; viscoelastic, the molecules of a solid become ori-
ented especially in the :2 ighborhood of a crack and the medium
s likely to be transversely isotropic as a result of homoge-
neous deformation. It seems highly Zesirable, in studying frac-
ture mechanics, to consider the crack propagation .problem by
taking into consideration the following importantrpoints:
1. tae viscoelastic behavior of material: bodies; 2. the aniso-
tropic nature of deformed solids; and 3. the three-dimensional
features of the state of stress and displacement fields as well"
as other related quantities in :Zhe problem of crack propagation.

In the fdllowing sections the effects of a finite penny
snaped crack onlthe stress and displacement fields in an infi-
nite transversely isotropic viscoelastic mediuwn are investigated.
Relations between the pressure distribution and the opening of
the crack are derived. Also, the most likely shape of the
opened-up crack is analyzed. Kuowing the shape of the crack,
we obtain results fcr an expanding crack in a viscoelastic medium.
Numerical results are also given for a physically realistic ma-
terial for which relaxation data are based on certain kaown re-

’

sults for oriented materials.

15
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Tae effect of a crack on the state of stress and displace-
ment can be invzstigated as the solution ¢i a mixed boundary
velue problem for a semi-iafinite medium. As a preliminary,
let us assume that the medium 1s transversely isotropic, visco-
elastic and has properties symmetrical about the 3 axis in
an arbitrary coordinate system. Consider the case that the
crack propagation is not significantly affected by inertia
forces of the medium, and in the absence of body forces, the
equation of motion becomes

Zaqutzlf) = 0
2% ' (37)

waere GZf(}ﬁf) is a symmetric stress tensor. All indicial no-

tations range over the integers 1,2,3 and summation over repeated
indices is implied. Also X stands for the triplet of coordi-
nates X;, X, X3 .

The constitutive equations for an anisotropic viscoelastic
medium can in general be expressed in the following form for

large nonlinear deformations.

¢
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where C;/"-,qf/ (X 6 D{/’ﬂf/ (X1 and c’:.y'f;j (X, E)
are anisotropic functions of relaxation mod:li. It is assumed
that the body is in its undeformed state and Cy‘ﬁ’/ (l)=0
when 7 = ¢ , and C})’,é’/ (X, 7) >0 waen Zl>0 . Under
sultably restricted conditions it may be possible to determine
the general response by using the same relaxation functic.s
Cone (42D . Gx, Dyl (X7 and Ef./%/ (X, 7)
may be replaced by functions of (s (X, 1/ . It is natural-
iy expectced that for large deformations the contributions from
the double and triple intcgrals will not be negligibly small.
However, for relatively small deformations, the first integral
alone will be sufficient for o’btaining the required information
[3}. To illustrate the method of analysis we shall consider
the linear case so that the Laplace transform technique may be em-
ployed. 1In this case small strains E{)f(»?.’,z’) and displacements

Uy (X ¢) will be related as follows

£y (=L + 244
‘ (39)

Use of the Laplace transform &¢35.) of a function

defined [7] by

F=/"Fctre

| ° | (40)
will recduce the first order iategral relaticas (38)to linear al-
gebraic relations. Limiting ourselves to homogeneous transverse-
ly isotropic media symmetrical about G -axis, (38) through the
use of (40) reduces to a

17




T (50 =5C, (5)E(X,5)+552(5) Eaz (X,3)+5C,3(3) Ex3 (X,5)
To2 (X,5) =5C2(5)%,) (X, 5045 En(5) Eus (X,8)+5Cr3(5)E33 (X,5)
3 (X,50=5C3(5)E,(45)+3Cr3 (30 Gz (X,5)+5C33(5) Ezs (2,50
J23 (X,50= 25 Cea (S)E25 (22

G (X,3)= 25 Caal(5) E3; (X5)

Tz (X,5) = S/ Cn (5)— Crz (5)] Ez £.Z,5) 1)

where Z/-nn Crin=/ &) are used, replacing C-T‘z.'/‘r(z’j for
coavenience and simplicity.

Using cylindrical coordinates (/7,8 ,.2) ;with Z along the
X -axis, it has been shown that (results to be published) all the

equations (37, (39, (39) (41 are satisfied for a symmetrical
problem 1f

— z . 2 o
Ur (12,5) ==Z Xi(rzs) +2 Z o{; (5) 3122(,/‘,"2;5)
=/ | i=/

179(/725)=0

(42)
Uz CF Z5)= Z/p’ (s) zﬂ/rzs)sz//, (5) 2ELLL:
=/ {=/
where _{Z( rnrZs) satisfies
i (rzs) | Urzs) 4 7 5 3’7 (KFZs)_
247 [a = %7[/) 2zZ* (43)
and 927/6’551 _ .917,/—(/7@)
Sz =7
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In (42)and (43) 7(5), C;(; s) ,ﬁ_;/_s) s /(7;-(5) anc 777, (s) are

defined as in the following equations

— — — — 2 .. —_— — — — —
Cort5)Coq (51‘7?5) (G (4G4 (50)=- G 53-8 (5055 (5] 7(5) #Cpal5) Cy (5) =0

pry = 72 =2
S (5 e . [ Gos 5)=Cn(3) /7 (380 7/:”,/ (5/{.4/5)— Gae(3)] —};{' BICLS) :
/[C(.s)/r/,- $)12G w2 G 659 ~Cae (5)7- (s)]-Cl2C ()7 (5)~ E50 77, ¢5)] ]

/[Z(gjy (- Caz (5)][2G, (D7 (5) - C@)y (5}]-6(;)//( )&(5)%{5)%2(«(5)]/

Bi (5)=
[ Eessz5, I3~ (5)///5/]-[6(5)/72, 612 Coa M G (9= Cs 55)76)]/

i Gr= 777 (s 52 ¢5) (0 Summgtion)

where Cs)= C;(S)+ Caals)

" Cos)

(45)

Substituting (42) into (41)we get

19



K=/

> : Y
Gl 550=L 584 (9L B 9 g (5] -5 E0 €0 738 f _Q___Zf2/ o

2 _ _ — ;-., ’. \z _ _ 3 _/_

e s T ey D L1ZS) _ S[G5)=Cats)] T, DX all2S)
SCr It I t) =55 = oAy (5)2AELES) ]

— 2 _ . _ _ _ —
O;e (/,’Z, D =Z{[5C-a (5)[/4« (s) v‘/é/k/.f)]—j & (5)% (5)] 9_%_;;152

5[6”{5)/?“ wl % A1 g 5)} Yabil 2/5 Crs (5)/&//( (s) —KC#Q‘;Z5

SO (5973 )00e5) S g;ggzs) 7,_5[&/(5) a;a)] ol wé&ﬁ@.&

, —_
— ‘. - - -—_ ~ V7 a

(zz (/,'2’5) =Z[5 C?}(.ﬁ)[/g/( (5)‘*/(//?/5)]"5 Cos (5 7" ('S)] erzj)
(5)/_/,; ()0t ()] SHELES

+ ZZ[.S Gj (5)/(,/,( s)— 5(;3 >22

k=/

— - ~ ) B
drz (r25) =): 5 Cag () [ 1+ 4x(3) * B (5)]—2Mg‘2

(f’z";)
fZZ 5 Ces (5)[o(x (5)+/<///<r5/] EYEY]

Tro (1, 25) =z (F,Z5)=0
(46)




With thes

[0}

celiniticns, any raclally sy.metrical bourniary value

problem can be solved oace proper functioas //(/" L5 ) are

& [y

found. It can be shown that (43 is satisfied by

— _Z _ _
Uitrzs)=lri Dicozt] ° (h=42) e )/;(5):@(:).

Then successive integration with respect to Z produces a series

of harmonic functions, usually known as first, second............
~vsaerithmic potentials ,,[83 . If Wk(sDZ is replaced by
. - . ¥ . . - . ; -ZL .
Lk (.S),c+zf_7 where § is a real varlablle and (=(-/)

— _ ' 2)-
the new function %(/’,’E,S}={/"{f [y (5)2u§]f

SO0 created 1s also harmonic because derivatives with respect to

Wk (507 are the same as those with respect to[ujx(S)Zf[f] .
The function ;//4, (K Zs) is complex aund its real and imaginary

parts are also harmonic. A judicious choice of one of these
logarithmic potentials will enable us to solve the problems in
which the proper boundary conditions are stipulated [,J .

Formulation of the Problem

With this preliminary informacion, the problem of a penny
shaped crack in an infinite medium can be reduced to that of a
half-space witha the boundary coanditions

on £=¢  plane

Gz (O L) ==P(rE)  o=r=p
Uz (F;07)= 0O ' R=< < o0
drz (F; OZ")_ . 0 £ [ << o

(&7
where A 1s the radius of the crack. If the crack is expand-
ing, then R=,7/) . However, we will first solve the prob-

lem of an unexpanding crack and then extend the results to the
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case of an expanding crack

With a little ex-minatica it follows that the proper func-
—d :7 > o g e
ticns L (rzs) in this case, i.e., A = constant, are

_— Z
4 A — B . 5 I 4 2 7 <
Yk (152,50~ An /a),( (022 (5 +{(eesozz 5 )+ 1T /
Generalizing to take into account the variation on the crack,

we choose

Vetrzs) =Fe/ M (8, 5)/«\47[4Jk(5)z +(E +(lwi 224+ LETHF ]

0 e A
+ 5ligecs)z -/ £ +([A/;'{5/Z—zf]€rf’)‘/d§ 48)

then

— _ P . /

/ S (5,50 [ = — o2 a3

XK(Kzﬁ):A%q-ZXZE; 2W()ZE - (Lt (Dz+ ET+1)

— (ke (5)2-0 5)% ) Flj a8
~ (49)

where /@(@iS) are arbitrary cunctions to be determined from
the boundary coaditions. Substituting (48) into (47, through the

use of (46) we get

ﬁ/ (5,5 dﬁ _ _Drrs

o (r-5)% 2A(s) - (50)
i
Jﬁ/ (55)d5=0 (51)
and
N L JtdlSOF B S) T ’
(5 5)=— = /= ,5)
hz (5,50 /#2504 B2 (3) (5 (52)
where

Ats) = 54, (5)//C}, (.S)[, . ))-r‘/[,/ (57— Cos (5D ,(5)/
. //__ 14005 () ZilS), Cor(8) [B) Y )= ol s) F(s)
/‘fO/;(S)v]G RY) w,(&) C-. /4) @‘(:)177, (_Q]_ 4,,(:)7\ ) (53)

22



T 2 s e TN s 2 5imcvlar intecorzl ecuati £

iL LS Zeeln <o av “v, &8 & SLnlv.a¥® integra.l eguation o
=l AT e - Vo] =3~ Ty N A= ey o s 2 M 4 - 2
tae Avel type. Multiply both sicdes by /L 1P%r?)Z ad ia-

tegrate with respect to [ over ¢z P/ , and eventually we

2
Z [T . e ___/ P rerrs)dr
Z o (5,505 A=Y F

Differentiating with respect to ¥

- g P pBrrsodr
/i (£:50= 3765 P, (eLriz

A : ' 1 .

wow o /3 (fS)  has to satisfy (51) iIn order that the displace-
ment boundary condition is satisfied. It can be shown that all
the boundary conditions are satisfied if we modify the above equa-

-

tion by adiing a Dirac Deita function as

/;(/’5)" 77/;(,)[ df’//) EEE - < Sm'f)/

o2 r)’—'
(54)
where
C=[ F rasdr f=r
(ff_/yf P=0
and S S cr-rodr= s

Substituting (54) into (52), (48) and (49) /i (£50 | Y (rzs)

and jC—K (/;Z5) may be computed. 3Zoth %{:(/3'2:’5) > 'ZK Cr,Z5)
/

go to zero as (/i F})7T—=eo

On the Z=0 | plane
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S = =yl 2
— / , 2
W/ [/;0/ ) d /'7,'\- (;, 5) ,{/;7 [> /5' * ) .]a é

0<r<Rr
=9 R< < oo
947(/7@5)_ Y Lk (50 Pre (£,5)d £
EYS —2/0 2 DF o=r=R
R —
_ Wi () e (£, 500 &
= ro o, '
k(Gs)=~2) _/ZJLZ“T;) (r=s~adé o=r=R
1 ' R £ o L .
| -:—2/ (550 2 a7y =
- o WeGsyr 7 5 R=r<o
(55

Then, substituting (55) into (46 we get, on Z=0 plane

—_— _ A - £ 2 ,,_zf
4/z0:0,5)=25(5)/r / (5,5),47&%—”—45 0% rer
=@ | RE <o

dzz(r0,5)=— D ([S) | 0Lr<R

R —
= €
ZA 5)0 (FEEo7T
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A ) 5 E S Perks) n s £ re
é/rC/fQ5/'=—Z/§‘7 W(/""p‘) ag O£ rER
! 17

| 2 R — PR 2 L
==-Z ) _QLM_ (r- ;f‘f*dg RE < ==
A (56)
| where
Bs)= B (9~ Ll 2800 Z

Similarly, the rest of the quantities can be computed. From the
results obtained so Zar it is apparent that the displacement
(,—/2[/70,5) on the crack surféce is related to the applied load-
ing through /—];(35’,5) . In other words, the displacemen: of the
crack surface must be consi.ce. with the applied loading. Then
the appiied load function ;Z(/’j'ﬁ) required for producing a desir-
able displacement Jz(/jO,S/’ cann be casily computed. To obtain
such a relation, diiferentiate the first of (56) with respect to

)/, then

o _dU(ros) _/ S AES) a5
B865) ar - Jr 5%,2)7

This is also a singular integral equation which may be solved

for 5/5"/ s) , finally as

4 £, 2 .
7 2 [/ d ["dltess) F£dE_ _ 17
Z ’75)"'7(75?(?5[/’ dfj ap (FEr)? Cg( )]

(58)
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waere

5_; / dua‘,, 50 PP
- f ar )7

Substitute . .¢) into (:5l,, then
—_— —_ 4 . : gy 2
PUES) = — LAB) g _d o Ahelpes) _FaP
MBS E0-50F @5 4. F  (PEEUF
(59
This equation is equivalent to tiic first of (56). A similar
relation petu.en the craclk opening éZ.(CZ;S) and the total
load AP (5) can be obtained as
- Fa G-
5 A (7 "ot g [dikites) _pap
P5) =~ == rar| —z==; - . T %
Bts) 502592 95 Jr 9P P=5%)
? —
==2?Z2/( /”7?(775)c7/’
A _
. (60)

The relation expressed in (59) is imy o:tént because it gives a
surface loading distribution for any prescribed crack opening.
Snaddon Il@ has computed similar :esults for a parabolic open=-
ing of tbe crack in an isotropic elastic‘medium. Use of relations
(59) and (60; ngerbrr with certain -nergy considerations will
enable us to p. lic : .7 likely shape of the openedl-up
crack, at least :wr .o .. sile transversely isotropic medium.
To obtzain results in the real time domain inversion of tae above
equations must be performed. 4 mere examination of the :xpres-
sions o750 s ﬂ—(j} , etc. and B/5) and Ac¢s) will indicate that
an exact inversics of these expressiocns in many cases may be

extremely difficulc. However, the limiting solutions at

2%



~

zz=-o az” [ =00 can be easily obtained. To extend the solu-

ntire time sce.e, &pproximate inversion methods can
be employed and the -olution expressed z2s t..z sum of exponcatial
functions. his is expounded in e followiny section rezarding a
moving crack in & vi-scoelastic mediun.

- b 1 ST SN - T o -
Yost Likely Shane of the Coerned-Upn Crack

Za this section alone assume taat the medium Is transversely
isotropic as before but e.astic. Then the quantities without
overaead bars denote the corresponding quantities for the elas-
tic medium. Let us assume that

' 2 s N

L/Z(CO):ba'/'b///'f‘ bz/”%~*‘7‘b~r (61)
waere Op are constants to be detzrmined. N is the numoer
to be chosen depending upon the accuracy required. The above
equation is quite general since any smooth function can be ex-
pressed in this form. Continuity of (/z(/0) recuires that

2, - N—=
which expresses &» in terms of other &» and 7 . For the
elastic medium A is determined from the Griffith's cricerion
of fracture fl’.ﬂ
Stw-U)=0
where W 1is free energy of an elastic solid and ¢ <ze surface

energy. Then

R
W= [ znrac e (rorar

N //
=-225 5 nb,bn G, (R
“ o =/
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(63)

U=21F°T

where 7/ is the surface tensioc ¢ che materiz
be stipulated that the critical values of A and by are those

which minimize the enerzy balance. The minimum is given by

oF
20/=U0 _ o S N=02 =N
2b6n / 7 (65)

wiaich give rise to equatioas

A N
ed 5 “ by —————dég’;?(’?) + aiRT =0
/7-=0 = o

N~

and
N
V' by 1= 0+ =tz
a=l (66)
These are (WN+/) equations for A and / number of Ay uiaknowns
and can be solved. Substituting them in (59) and (61) we obtain

the most likely shape of the opencd-up crack and the correspond-

1>
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ing cons

- R T . [ - o AL aaT A
{(6L) w..l approacia the éxaclh cispleacemenc,

zations bec.aze Incoo.:zingly difflsu
zble to expect that the most 1i

in a viscoe’

Yovinz Crocik in Visccele . zic Medl . m

Yow we will consider
F=R() whare AH({)1is

formulate the same problem by pres

£
t
£
j)
[¢)
ot
[T
¢
9]

sistent with the loading

of time Z’.

cribing a displacement,

stent pressure di-:zribution. I increasing the number

however, the

T - - - [P
LC. 1t Ty -o Jeason~

likely shape of the opemed-up crack

astic madiuv.. will have a somewhat similar form.

the same proslem defined by (47) when

A1SO we can

con-

75(77f) , on the crack surface. Tae

advantage in this case is that we can satisfy the boundary con-

ditions more easily.
Jrz [C:Q,f) = O
Uz (5ot)

U

° X
~
N
<

We have shown in the carly formulation of

if A = constant the crack problem as
solved easily. If we define

where Fﬂn . a constant such that

o

f

function

Then on £=0 plane

= < o0
o= = R
RO=TL oo (67)
\ tae provlem that

formulated above can be

Won (15 €D

on Chsr%;}ﬁn

OL VLR

RE L Rm. (68)

then we can use the tecanique which has been used by Lee and

Radok [12]
to solve this problem with bounding con

the case only when A (%)

is an increasing funcilon.

. : 1
in contact problems and generzlized by Graham [lQJ s

-

ditions given in (67) in

If we

s



restrict the validity of the solution to o <& 7 £ T such
that FCE) L Fm £ P , then the usual difficul-
ties of using the Laplace transform for moving boundary problems
wili be overcome. Since 7 is an arbitrary ﬁumber, the vali-
dity of the solution for the-.entire time range can be easily
established when the solutions exist., Under these conditions
(59) can be written for the present case but in the time domain
as |
B(sF) prt)=—54 Als5) I re)]
(69)

where

d Rd WPs) pPap
1e5 ol 5 9z | “ap g

.(70)
and B and A4 are differential operators which are similar to
Laplace transform functions B(5) and /_7-(5) respectively. In~
addition, we can transform (56) by using the same technique. It
must be impressed that (69) holds only when #A(Z) is an in-
creasing function and can be treated as a differential equation
‘for P(rl) where the right-hand side is known. In this case
we get a consistent pressure distribution for the given crack

opening. Alsb, we can consider (69) as a differential equation

for [JLrR(YHJ . sSimilarly, (60) is modified to

??(z‘)
5(57‘) Pt)=-8A4 (;zc) /’f[/”;?(f/]dr
(71)

where P(Z‘) is the total load on the crack surface.
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/ ) “"'Qo?"é} az— (72)

then (69) and (70) are first orcer differential -guations and

have solutions as !

. by 4
Plrt)=Re st - e “/eh (Gt 0y 57)0 RO

(73)

o)
4]
e}

5 | s
Prt)—pe B L o5l fo T a2 ) [ritrelarat e

waere 'ﬁ% and /A are constants of integration and are to be

evaluated at Z =0 . We can alsc .olve (69) and (IC) as

s
Llrra]=mMe™ “f—JL 9@“?&¢&ﬂd;mnydf
(75)
7?&‘) ' z‘ Lol 2
)i [rilrreiat -Ne ™= 55 € “’j’ Y bl ) PO,
| | (76)

where M and N are constants of integracion. Howaver, if
é?(j%) and f4éf%) are higher order differential operators, then
solutions of (73), (74), (75) and (76) will contain more terms
similar to those already obtained, and the computations present
no diss.culties. It can be shown that the results obtained in

-
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cduced easily to those in zn earlier sec-
tion, when B(E) =FHE) whers Z(/Z jé 52@

4150, similar resulls can Se obtained for isotropic viscczlas-
tic medium by substituting proper values Ifor c;aS), /573)

etc. in terms 02 N\ (35 aond /ZZSJ . In this case instead of two
functions % (7 Z 5) , we get anly one function since 7—,(5) =
iZfi>= /. The dependenc. of spatial coordl.ates for both iso-
tropic and transverse media i1c the same, so that many of the
conclusions in either cases would be expected to be the same.

the problem becomes

H
Hh
cr
&)
o
0
by
[
0O
"
e
w
=]
(]
et
0
H
H
(¢]
[«
". )
[
o}
[
[©)]
[}
wn
4]
o
[e}

Cifificult but still can be solved. In that case the pre. iminary
informatica musc be expressed in generciized coordinates, and
Che proper correszonding resulcs will then be derived in the
same coordinate system.

Tillustrations end Numerics_ Results

Let us now consider a pariicular case of a crack on which

-
+

a uniform pressure is applied. ZTirst, we consider the case

wherein /&A(¥) = coastant. Then

ﬁ(/jz‘)=p/-{ €7 (77)

re M1 is the Heavyside unit stes function,

3

(@)

i

W

frhs) ==l [1= 72 S(R—F)] 2%

Oan the X£=0 piane
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77 N Vé ;/ 2 2 ‘::’£

Ue (17650 == 2250 (prr) 0L LR

Gz (Fos) =--2 OL£I£R
=

— 2'9 . ‘,P — f:- ’
= 735 L S77 Vai ['/__/_3/2 3‘_7 ARLVr< oo
(79)

Simi.iarly, othexr quantities can alsc be ccmjsuted. Before we can
obtaln any numerical results we m. .c consider a particular ma-
terial and its properties. It may- be zentioned that the above

results are true Ior any general viscoelastic medium. Now let

H

us consider a medium whose behavior C})‘w‘/ (Z) 1is representable
by a standard linear sclid. The response curve for this model

material 1s given by the following differential equation

G (30)

where & and £, are elastic constants, )72 is the viscosity
coefficient and T the relaxetion time such that /=&, .
In general for various C{/'f;z (t) & 's and 7'5 are differ-
ent in different directions. For a class of high polymers the
elastic properties for a transversely isotropic medium are
theoretically predicted in [14} . Choosing the values for/25%

Srientation we get

«©) ce) ) ce) t
Cs:'=/95¢, Cs =Cei= 0450 lod

Ci'= Cid'=0 33367 ®1) _




—-— o T e - - ~ o

o -~ S = - - ~ ~A oA P, - 4 -
408 CLO1Lle 0T Le.gxalionm ILLIT zanr & Dased unon the supposition

=3 I = < e SR ~ - R . JP ] E 3 ~ e T
~flat VLSCOsLly &Oes 0L vary sL_Liiicancly wita orientation.

’E'/=’Z- ”,-;3=-‘0-5/7?

2= Tes=37T Cr3="Tues=222/7C {82)

Also, it is assumed that in (80) o =4F,="> . T-is corres-
ponds to having similar springs in tiz model (Fig 6). It may be
mentioned that the valizs in (8l) are presumebly close to the ac-
tuai physical values. Tarough the use of (8l) and (82) various
cuantities —[ (37, /3—”:-/5) , etc. are easily calculated. It

is relatively simple to determine large and sma.l time limiting

behavior of ve.lous quantities in (79). ..lso the results for
o< Zf< 0o are Gbtained using oaly the Ifirst approximation.
In Fig 7 the displacement (/z (/70 ¢) 1s drawn against the
dimensionless radius.
Next we conslider the same problem for B =277 . Again

using the first approxzimation as in (72) it can be shown that

Sy — - =

A=) =020/ +0.786 =

(83)

If we assume that W/(/Z) in (47) is givea as

W) = Q26 [ re>= 2] # (84)
consistent with the normal loading ‘ﬁ(/jz’);~ 22 H (L)
waere f2(Z) and R(?) are unknown functicus of cime. Also,

26G)=0, 2 f=0 ; the-



.

w__zﬁ/<[526) _ A

E(3) 5- T Q020 7T
Substitute (84) into (75) we get

t

L) _ 354 —pog o~ 27567

L2 (85)
Now put {84) into (76) and solve for AC(Z) then

RE) _

256 —[-.-t) 0.3/0
Fo

pooeozF (/545 —0 545
(86)
where /o is the initial radius of the crack. 1In order to ob-
tain reasonable results, we must assume Mo %0 . Some of these
results are shown in Figures 8 and 9. It can be seen from the
curve in Fig 8 that _Q({) assumes a finite limit for Z=¢ and
f=co. But R(E in Fig 9 becomes infinite as can be ex-
pected from the physical reasoning. It is interesting to note
that the Crack must propagate away from its center, since the to-
tal load is increasing with timé. Another interesting observa-
tion is that A(?) varies approximately linearly with time. This
suggests a relation
AR o~ )
dt - . (87)
where U is the slope of the curve, and is nearly constant. In
many earlier investigations a constant rate of crack propagation
has often been assumed. Furthermore, there is no difficulty in

obtainin: analytical results for cracks of different shapes,
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Fig. 5 Schematic Diagram of a Crack
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